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10 Applications aux équations différentielles

Exercice 10.2. On utilise la formule d’inversion du théorème de réciprocité de la trans-
formée de Fourier pour la fonction f définie par f(x) = xe−ω|x| :

xe−ω|x| = 1
2π

∫ ∞

−∞
F (f)(ξ)ei x ξdξ = −2 i ω

π

∫ ∞

−∞

ξ

(ω2 + ξ2)2 ei x ξdξ

= −2 i ω

π

(∫ +∞

−∞

ξ

(ω2 + ξ2)2 cos(ξx)dξ + i

∫ +∞

−∞

ξ

(ω2 + ξ2)2 sin(ξx)dξ

)
.

Puisque f(x) = xe−ω|x| ∈ R il s’ensuit que (mais c’est évident car la première fonction
intégrée est impaire) :∫ ∞

−∞

ξ

(ω2 + ξ)2 cos(ξx)dξ = 0 et
∫ ∞

−∞

ξ

(ω2 + ξ2)2 sin(ξx)dξ = π

2ω
xe−ω|x|

La fonction g définie par g(ξ) = ξ

(ω2 + ξ2)2 sin(ξx) est paire et on obtient donc que :

∫ ∞

0

ξ

(ω2 + ξ2)2 sin(ξx)dξ = π

4ω
xe−ω|x|.

En posant ξ = t et en choisissant ω = 2 et x = 1
2 on trouve :∫ ∞

0

t

(t2 + 4)2 sin
(

t

2

)
dt = π

16e
.
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11 Théorie des distributions

Exercice 11.1. Soit φ ∈ D(R) et R > 0 tel que φ(x) = 0 pour tout |x| > R. Alors, on a

Tn(φ) =
∫ ε−

n

−R

φ(x)
x

dx +
∫ R

ε+
n

φ(x)
x

dx

=
∫ −ε−

n

−R

φ(x) − φ(0)
x

dx +
∫ R

ε+
n

φ(x) − φ(0)
x

dx +
∫ −ε−

n

−R

φ(0)
x

dx +
∫ R

ε+
n

φ(0)
x

dx

=
∫ −ε−

n

−R

φ(x) − φ(0)
x

dx +
∫ R

ε+
n

φ(x) − φ(0)
dx

− φ(0) log
(

R

ε−
n

)
+ φ(0) log

(
R

ε+
n

)
=

∫ −ε−
n

−R

φ(x) − φ(0)
x

dx +
∫ R

ε+
n

φ(x) − φ(0)
dx

− log
(

ε+
n

ε−
n

)
φ(0)

−→
n→∞

∫ R

−R

φ(x) − φ(0)
x

dx − log(a)φ(0)

=
〈

v.p.
1
x

− log(a)δ0, φ

〉
,

ce qui montre que

lim
n→∞

Tn = v.p.
1
x

+ log(a)δ0 dans D ′(R).

Exercice 11.2. Grâce à la formule des sauts du cours, comme g est continue en zéro et
C1 sur R∗, on en déduit que [g]′ = [g′] = [H], où H est la fonction de Heaviside. Et on
a déjà montré en cours que H ′ = δ0, ce qui complète la preuve. On peut aussi faire le
calcul direct :

⟨Lg, φ⟩ = ⟨g, φ′′⟩ =
∫ ∞

0
x φ′′(x)dx = −

∫ ∞

0
φ′(x)dx = φ(0).

(Tout les termes de bord à l’infini sont nuls car la fonction est à support compact.)
Exercice 11.3. On a déjà montré dans le premier chapitre que ∆ log = 0 sur R2 \ {0}.
C’est aussi immédiat en coordonnées polaires, car

∆ = ∂2
r + 1

r
∂r − 1

r2 ∂2
θ ,

et on calcule

∂r log |x| = ∂r log(r) = 1
r

∂2
r log |x| = − 1

r2 ,
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ce qui montre bien que

∆ log |x| =
(

∂2
r + 1

r
∂r − 1

r2 ∂2
θ

)
log r = − 1

r2 + 1
r

(
1
r

)
+ 0 = 0.

En intégrant par parties, on obtient∫
R2\Bε(0)

log |x|∆φ(x)dx =
∫
R2

φ(x)∆ log |x| dx +
∫

∂(R2\Bε(0))
(log |x| ∂νφ − ∂ν(log |x|)φ) dl

=
∫

∂B(0,ε)
((∂r log r)φ − log r(∂νφ)) dl.

Attention au changement de signe ! La fonction φ est lisse. Par conséquent, elle est bornée
en 0, on a même∣∣∣∣∫

∂B(0,ε)
log r ∂νφ dl

∣∣∣∣ ≤ ∥∇φ∥L∞(R2) |log(ε)|
∫

∂B(0,ε)
dl = 2πε |log(ε)| ∥∇φ∥L∞(R2) −→

ε→0
0.

D’autre part, on a quand x → 0

φ(x) = φ(0) + O(ε),

ce qui montre que∫
∂B(0,ε)

(∂r log r)φ dl =
∫

∂B(0,ε)

φ(x)
ε

dl = 2πφ(0) + O(ε) −→
ε→0

2πφ(0).

Finalement, on obtient

⟨∆G, φ⟩ = ⟨G, ∆φ⟩ = 1
2π

∫
R2

log |x|∆φ(x)dx = 1
2π

lim
ε→0

∫
R2\Bε(0)

log |x|φ(x) = φ(0),

ce qui montre que

∆G = δ0 dans D ′(R2).

Plutôt cool, non ?
Exercice 11.4. On a

v.p.
1
x

= (log |x|)′ ,

ce qui montre que pour tout φ ∈ S (R),∣∣∣∣〈v.p.
1
x

, φ

〉∣∣∣∣ ≤
∣∣∣∣∫

R
log |x|φ′(x)dx

∣∣∣∣ ≤
(∫ 1

−1
log

(
1

|x|

)
dx

)
∥φ′∥L∞(R)

+
(∫

R\[−1,1]

log |x|
|x|2

dx

)∥∥x2φ′∥∥
L∞(R) = 2

(
∥φ′∥L∞(R) +

∥∥x2φ′∥∥
L∞(R)

)
.

(Il n’est pas nécessaire de calculer les deux intégrales en question, il suffit de remarquer
qu’elles sont finies.)
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Exercice 11.5. On a déjà montré dans le cours que ex · f ∈ C∞(R). De plus, on a pour
tout n ∈ N

0 ≤ lim sup
x→∞

xnf(x) ≤ lim sup
x→∞

xne−x = 0,

ce qui montre que f ∈ S (R). On a

⟨ex, f⟩ =
∫ ∞

0
e− 1

x dx = ∞.

Par conséquent, on a ex /∈ S ′(R) alors que ex ∈ D ′(R) car la fonction exponentielle est
localement intégrable.

Exercice 11.6. On a par inversion de Fourier pour tout φ ∈ S (R)

⟨F (1), φ⟩ = ⟨1, F (φ)⟩ =
∫
R

φ̂(ξ)dξ = 2π φ(0) = ⟨2π δ0, φ⟩ ,

ce qui montre que

F (1) = 2π δ0,

ce qui fait sens car F (δ0) = 1, et on retrouve donc l’inversion de Fourier : F 2(δ0) = 2πδ0.
Le second calcul est fait en cours et est donc omis.
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