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10 Applications aux équations différentielles

Exercice 10.2. On utilise la formule d’inversion du théoreme de réciprocité de la trans-
formée de Fourier pour la fonction f définie par f(z) = ze~I*l :
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Puisque f(z) = ze Il € R il s’ensuit que (mais c’est évident car la premiere fonction
intégrée est impaire) :

S 5 oo 5 . —w|x
/oo mcos({x)df =0 et /oo m sin(§z)d¢ = %xe @]

§

La fonction g définie par g(§) = 1P sin(&x) est paire et on obtient donc que :
w
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1
En posant £ =t et en choisissant w =2 et z = 3 on trouve :
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11 Théorie des distributions

Exercice 11.1. Soit ¢ € Z(R) et R > 0 tel que ¢(z) = 0 pour tout |x| > R. Alors, on a

T.(p) = /6; Mdm + /gR Mdaz:

_ /RE” —;x) - (p(ofda:::— /R pl@) =2(0) 4 4 /_5" £0) g 4 /R £0) 4,

_ /_: de + /f w — (0)log (g) + (0) log (g)
)

_ /;_ so(w);w(O)der/f so(fc)C;:sO(O) log (? (0)
— ’ Mdz — log(a)e(0)

1
= <v.p.— — log(a)do, go> ,
x
ce qui montre que

1
lim 7, = v.p.— +log(a)dy ~ dans Z'(R).

n—00 x

Exercice 11.2. Grace a la formule des sauts du cours, comme g est continue en zéro et
C! sur R*, on en déduit que [g]' = [¢'] = [H], out H est la fonction de Heaviside. Et on
a déja montré en cours que H' = dy, ce qui complete la preuve. On peut aussi faire le
calcul direct :

@%@=%%¢3lexW@MxZ—AMWWMw=¢®)

(Tout les termes de bord a I'infini sont nuls car la fonction est & support compact.)

Exercice 11.3. On a déja montré dans le premier chapitre que Alog = 0 sur R? \ {0}.
C’est aussi immédiat en coordonnées polaires, car

1 1
A=9>+ 20, — —83,
ooy 72
et on calcule

1
O, log |z] = 0, log(r) =

1
2 —
o loga| = ——.
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ce qui montre bien que

1 1 1 1 /1
Alog|z| = (834——& - —283) logr = —— 4+ — (—) +0=0.
r r

r2  r\r
En intégrant par parties, on obtient

/ log|x\Ag0(x)dx:/ go(:c)Alog|x|dx+/
R2\Bc(0) R2

~ (log|z| 9, — O, (log |x|)p) di
B(R2\B.(0))

/ ((0,logr)p —logr(d,p)) dl.
0B(0,¢)

Attention au changement de signe ! La fonction ¢ est lisse. Par conséquent, elle est bornée
en 0, on a méme

/ 1ograysodz] < |Vl o) Hlog )] / dl = 27 [log(e)] [ Vplly o gz) —2 0.
9B(0,¢) 9B(0,¢) e

D’autre part, on a quand z — 0

p(x) = ¢(0) + O(e),

ce qui montre que

/ (0, logr)pdl :/ 2 ()
OB(0,e)

dl =21p(0) + O(e) — 2mp(0).
8B(0,e) € €0

Finalement, on obtient

1
(AG, p) = (G, Ap) = 2—/ log |z|Ap(x)dx
™ JR2

ce qui montre que

= — lim
QT e—0

~logzfp(x) = ¢(0),
R2\B. (0)

AG = 0 dans Z'(R?).
Plutot cool, non ?

Exercice 11.4. On a

1 /
p—=(1
v.p = (loga])

ce qui montre que pour tout ¢ € .¥(R),
! 1
< (/ log <—> df) 1166|100 ()
-1 2]

1
‘<v.p-5,so>‘ < /10g|56|90’($)d35
R

log || ) B )
([ ) 1y =2 (1 + 12 )

(Il n’est pas nécessaire de calculer les deux intégrales en question, il suffit de remarquer
qu’elles sont finies.)
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Exercice 11.5. On a déja montré dans le cours que e* - f € C*°(R). De plus, on a pour
tout n € N

0 <limsupz"f(x) <limsupz"e ™ =0,

T—00 T—00

ce qui montre que f € #(R). On a
e, f) :/ e rdr = oo.
0

Par conséquent, on a e* ¢ ./(R) alors que ¢” € Z'(R) car la fonction exponentielle est
localement intégrable.

Exercice 11.6. On a par inversion de Fourier pour tout ¢ € ./(R)

(F(1),0) = (1,7 () = / B(€)de = 2 p(0) = (2760, )

R

ce qui montre que
y(l) =27 50,

ce qui fait sens car Z(dy) = 1, et on retrouve donc I'inversion de Fourier : #2(dy) = 2mdp.

Le second calcul est fait en cours et est donc omis.
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